Interpretation of Radiation Measurements – Defensibility and Pitfalls

Health Physics Society
Professional Development School
Radiation Instruments – New Technology and Developments
Baltimore, MD
July 11, 2014

Ray Johnson, MS, PSE, PE, FHPS, CHP
Director
Radiation Safety Counseling Institute
ray@radiationcounseling.org

Two Aspects for Interpreting Radiation Measurements

- Understanding radiation instruments
 - How they work?
 - What they measure?
 - What are the pitfalls?

- Psychology of interpretation
 - What do the measurements mean?
 - How will the measurements be used for safety decisions?

Good Decisions for Radiation Safety

- We rely upon good measurements to tell us the type and amount of radiation

- Big questions?
 - Is your instrument telling you what you think it is?
 - What can go wrong?
 - What do the numbers mean?

Steps for Defensible Measurements

1. Deciding what to measure?
 - Exposure (mR/hr) or activity (cpm)?
2. Choosing the proper instrument
3. Verifying instrument performance
4. Using the instrument properly
 - According to calibration?
 - If you have been careful with above steps,
 - There are still countless pitfalls
 - You now have measurements to interpret

Goals for Measurements

- Improvements in quality
- May not consider how good the data need to be
 - What will data be used for?
- Measurements take on a life of their own
- Samples may be collected haphazardly
- Quality of measurement may exceed quality of sample
 - Example - swipes, wipes, or smears

Two Axioms on Measurements

1) “Measurement results have no meaning until interpreted for a particular purpose”
 They are just numbers

2) “Measurements only have a meaning in terms of how they are interpreted”
 The meaning is whatever people believe
Interpretation of Radiation Measurements - Defensibility and Pitfalls

Psychology of Radiation Measurements
- Interpretation may have as much
to do with attitudes and perceptions
as it does with technology
- Same measurements may have
different meanings for others
- Examples:
 - Technician at nuclear plant,
 “We got a hot one here!”
 - Industrial worker saw
 GM meter go off scale
 - Granite counter tops
 - Firemen observing twice background
 - Screaming GM meter

Questions for Interpretation?
- What decision do you want to make?
- How good do the measurements need to be?
- What do the numbers mean?
- Are the measurements defensible?
- How much resources are you
 willing to commit on the
 basis of these measurements?
- What is the risk of making a mistake?
 - What if you act or do not act?
 - How will you be held accountable?
 - Upset workers? Union? Management?

Making Good Decisions
- How to avoid decisions that may not be
 warranted by the data, false positives
 - Be skeptical,
 - Ask lots of questions before decisions
- Repeat measurements for
 confirmation, with other people
 and other instruments ideally
- Typical when finding
 actionable levels
 - Most want to take immediate action
- No one wants to be criticized
 - For not taking action

Dealing with Uncertainty
- Most people do not want to deal with
 uncertainty, they want absolute values
- They typically do not ask questions
to evaluate the data or
to determine if the data
are defensible
- Tendency is to assume all data
 are of high quality and
 suitable for making decisions
 - When the number is
 written down, it becomes reliable

Radiation is a random event
- Random in time and direction
- What does this mean for measurements?
- How do we determine the quality or
 uncertainty of a measurement?
- How good does the measurement
 have to be for a defensible decision?
- How much money are we willing to spend?

Common Aspect of Scenarios
- If its measureable, it must be bad!
- Interpretation of measurements is often
 a matter of responding to fears
- One person’s answer for defending
 conservative decisions,
 “Why take chances?”
- Common mindset
 Measurement = “Deadly Radiation”
- Risks of NOT taking action
 - Fears, criticism, responsibilities
 - Making a mistake

Uncertainty of Radiation Measurements
- Radiation is a random event
 - Random in time and direction
- What does this mean for measurements?
- How do we determine the quality or
 uncertainty of a measurement?
- How good does the measurement
 have to be for a defensible decision?
- How much money are we willing to spend?
Uncertainty in Measurements

- Radiation is statistically random
- Decay constant – \(\lambda = \frac{0.693}{T_{1/2}} \)
 - probability per unit of time that a decay will occur
- There are no absolute measurements of radiation
- No measurement is a single value
- All are “best estimates”
- What is the best quality standard available from NIST?
 - Since all measurements are made by comparison, we can never be better than the standard

Portable Instruments

- NIST standard may be within +/ - 5 %
- Calibrations may be within +/ - 10 %
- Rule-of-thumb, +/ - 20 %
- Allowance for uncertainty affected by:
 - Choosing right instrument
 - Is it working properly
 - Is it used properly
 - How does instrument respond

How Do We Quantify Uncertainty

Estimates based on variations of sample count rates and background

Standard Deviation = \[\sigma = \sqrt{\frac{N_{s+b}}{T_s} + \frac{N_b}{T_b}} \]

- \(N_{s+b} \) = cpm of sample + background
- \(N_b \) = cpm of background
- \(T_s \) = sample counting time
- \(T_b \) = background counting time

Reporting Conventions

- \(4.0 \text{ pCi/l} \) (no indicator of uncertainty)
- \(4.0 \pm 0.5 \text{ pCi/l} \) (uncertainty as std. dev.)
- \(4.0 \text{ pCi/l} \pm 12\% \) (uncertainty as CV)

Choosing Right Instrument

- What is your need for data?
- Exposure or activity measurements?
- What decisions do you want to make?
- May have to rely on available meter
- Could be marginal or totally inadequate

Significant Figures?

<table>
<thead>
<tr>
<th>pCi/l</th>
<th>CV - %</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>25%</td>
</tr>
<tr>
<td>4.0</td>
<td>2.5%</td>
</tr>
<tr>
<td>4.4</td>
<td>2.3%</td>
</tr>
<tr>
<td>11</td>
<td>10%</td>
</tr>
<tr>
<td>11.1</td>
<td>1%</td>
</tr>
<tr>
<td>100</td>
<td>(1 \times 10^2)</td>
</tr>
<tr>
<td>111</td>
<td>(1 \times 10^2)</td>
</tr>
<tr>
<td>135</td>
<td>(1 \times 10^2)</td>
</tr>
</tbody>
</table>
Interpretation of Radiation Measurements - Defensibility and Pitfalls

Verifying Instrument Operation
- How do you know if your instrument is working properly?
- Battery check
- Check source response
 - Appropriate source?
- Possible probe or cable failure?

Proper Instrument Usage
- Calibration conditions
 - Reproduce calibration conditions
- Geometry conditions
 - How was meter calibrated?

9 Factors Affecting Quality
1. Wrong detector or wrong probe
2. Calibration conditions
3. Energy dependence
4. Reading the wrong scale
5. Reading mR/hr for a beta signal
6. Background interference
7. Backscatter and self absorption
8. Minimum detectable activity
9. Operator factors: fatigue, speed of probe, thoroughness of scan

Nal and Plastic Scintillator Response

Pan GM with Filter

Pressurized Ion Chamber Response
More Factors Affecting Uncertainty in Radiation Measurements
- Radiation is random
- Variation in standards
- Sensitivity of instruments
- Counting time
- Amount of radiation
- Background and variations

Quality of Radiation Measurements
- No measurement is a single value
 - If repeated, result will be different
- No absolute measurements
- Radiation quantities are determined by comparisons
- Quality control
 - Spikes, blanks, duplicates
 - Single / double blinds
 - Control charts

Defending Results
- Ask lots of questions
- How do you know if the data are any good?
- Right instrument, working properly, used properly, calibration, energy dependence, geometry?
- Report results with estimates of all sources of uncertainty,
 - Be careful of significant figures
- Always repeat for confirmation,
 - Before reporting
 - or making expensive decisions

Summary
- What do the numbers mean?
- Measurements only have meaning in terms of interpretation
- Data interpretation may be driven by fears
 - Of radiation
 - Of consequences, health risks, liabilities
 - Making a mistake
- Is your interpretation defensible?
- What are you willing to commit?

Questions?
ray@radiationcouseling.org
301-370-8573